Solution of Simultaneous Linear Equations

2

Solution of Simultaneous Linear **Equations**

Larry Caretto Mechanical Engineering 501A **Seminar in Engineering Analysis** September 11, 2017

Northridge

Outline • Review last lecture • Solution of simultaneous equations • Gauss elimination procedure • Rules for existence and uniqueness of solutions • Matrix rank and determinant rank • Homogenous equations

Northridge

Review Inner Products

- General expression is (**x, y)**
- For two conventional vectors, $[x_1 \ x_2 \ x_3]$ \ldots x_n] and [y₁ y₂ y₃ \ldots y_n], the inner product is Σ x_iy_i
- For two column vectors, **x** and **y**, we can express the inner product as $x^T y$
- For two row vectors, **x** and **y**, we can express the inner product as **xy**^T
- We can also define inner products as integrals of two functions **Northridge**

5

Review Linear (In)dependence • A set of vectors *linearly dependent* if the following equation holds, where at least one of the α_i is not equal to zero. $\mathbf{x}_{(1)} + \alpha_2 \mathbf{x}_{(2)} + \cdots + \alpha_k \mathbf{x}_{(k)} = \sum_{i=1}^k \alpha_i \mathbf{x}_{(i)} = \mathbf{0}$ $\alpha_1 \mathbf{x}_{(1)} + \alpha_2 \mathbf{x}_{(2)} + \cdots + \alpha_k \mathbf{x}_{(k)} = \sum_{i=1}^k \alpha_i \mathbf{x}_{(i)}$ • A *linearly independent* set of vectors is one that is not linearly dependent. • Cannot have $\mathbf{x}_{(i)} = \mathbf{0}$ in LI set 6 Northridge

8

Review n-dimensional space

- An n-dimensional vector space has a set of n linearly independent vectors
- No set of n+1 (or more) linearly independent vectors exist in the space
- Any vector in an n-dimensional space can be represented by a linearly independent combination of n vectors.
- A set of n linearly independent vectors is called a **basis set** and is said to **span the space**

7

Northridge

Review Orthogonal Vectors

- Two vectors whose inner product equals zero are *orthogonal*.
- A set of n vectors, $e_{(1)}$, $e_{(2)}$, ..., $e_{(n)}$, are mutually **orthogonal** if $(\mathbf{e}_{\mathsf{(i)}},\, \mathbf{e}_{\mathsf{(j)}}) = \mathsf{a}_{\mathsf{i}} \mathsf{\delta}_{\mathsf{i} \mathsf{j}}$
- For an **orthonormal** set of vectors, $(\mathbf{e}_{(i)}, \mathbf{e}_{(i)}) = \delta_{ij}$
- The usual unit vectors in mechanics (**i**, **j**, and **k**) are orthonormal

Northridge

37

Upper Triangular Determinant a_{11} a_{12} a_{13} a_{14} a_{15} a_{22} a_{23} a_{24} a_{25} 0 a_{22} a_{23} a_{24} a_{25} 0 a_{33} a_{34} a_{35} $0 \mid 0$ $= (-1)^{1+1}$ a_{33} a_{34} a_{35} *a* 11 $0 \mid 0$ a_{44} a_{45} $0 \quad 0 \quad 0$ a_{44} a_{45} $0 \quad 0 \quad 0$ a_{55} $0 \quad 0 \quad 0$ a_{55} a_{33} a_{34} a_{35} a_{45} $a_{11}(-1)^{1+1} a_{22} \begin{vmatrix} a_{33} & a_{34} & a_{35} \\ 0 & a_{44} & a_{45} \end{vmatrix} = a_{11}a_{22}(-1)^{1+1} a_{33} \begin{vmatrix} a_{44} & a_{45} \\ 0 & a_{45} \end{vmatrix}$ $= a_{11}(-1)^{1+1} a_{22} \begin{vmatrix} 0 & a_{44} & a_{45} \end{vmatrix} = a_{11}a_{22}(-1)^{1+1}$ a_{44} \overline{a}_{45} 33 \overline{a}_{55} $\overline{0}$ a_{55} **Northridge** $= a_{11} a_{22} a_{33} a_{44} a_{55}$ 38

Northridge

44

Rank and Inverses

- Finding **A**-1 for an n x n matrix requires the solution of $Ax = b$ n times, where b is one column of the unit matrix
- We cannot solve this equation unless rank $A = n$
- An n x n square matrix **A** will not have an inverse unless its rank equals its size

43

Northridge

Rank and Inverses II

- We have previously seen the general result for the elements, b_{ij} , of $\mathbf{B} = \mathbf{A}^{-1}$
- $\bullet\;$ b_{ij} = C_{ji}/Det(**A**), where C_{ij} is the cofactor of a_{ij}
- We see that b_{ij} is not defined if Det $A = 0$
- A^{-1} does not exist if Det $A = 0$
- Det $A = 0$ for an $n \times n$ determinant shows that Rank **A** < n
- Det $A \neq 0$ and rank $A = n$: two equivalent conditions for $A_{(n \times n)}$ to have an inverse

Northridge